Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit
نویسندگان
چکیده
منابع مشابه
Maximum likelihood Hebbian rules
In this paper, we review an extension of the learning rules in a Principal Component Analysis network which has been derived to be optimal for a specific probability density function. We note that this probability density function is one of a family of pdfs and investigate the learning rules formed in order to be optimal for several members of this family. We show that, whereas previous authors...
متن کاملMaximum Likelihood Hebbian Learning Based Retrieval Method for CBR Systems
CBR systems are normally used to assist experts in the resolution of problems. During the last few years researchers have been working in the development of techniques to automate the reasoning stages identified in this methodology. This paper presents a Maximum Likelihood Hebbian Learning-based method that automates the organisation of cases and the retrieval stage of casebased reasoning syste...
متن کاملLocalized Exploratory Projection Pursuit
Based on CART, we introduce a recursive partitioning method for high dimensional space which partitions the data using low dimensional features. The low dimensional features are extracted via an exploratory projection pursuit (EPP) method, localized to each node in the tree. In addition, we present an exploratory splitting rule that is potentially less biased to the training data. This leads to...
متن کاملProjection Pursuit for Exploratory Supervised Classification
In high-dimensional data, one often seeks a few interesting low-dimensional projections that reveal important features of the data. Projection pursuit is a procedure for searching high-dimensional data for interesting low-dimensional projections via the optimization of a criterion function called the projection pursuit index. Very few projection pursuit indices incorporate class or group inform...
متن کاملLearning Curves for Error Minimum and Maximum Likelihood Algorithms
For the problem of dividing the space originally pad tionec ~y a blurred boundary, every learning algorithm can make the probability of incorrect prediction of an individual example E decrease with the number of training examples t. We address here the question of how the asymptotic form of ~ ( t ) as well as its limit of convergence reflect the choice of learning algorithms. The error minimum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Data Mining and Knowledge Discovery
سال: 2004
ISSN: 1384-5810
DOI: 10.1023/b:dami.0000023673.23078.a3