Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum likelihood Hebbian rules

In this paper, we review an extension of the learning rules in a Principal Component Analysis network which has been derived to be optimal for a specific probability density function. We note that this probability density function is one of a family of pdfs and investigate the learning rules formed in order to be optimal for several members of this family. We show that, whereas previous authors...

متن کامل

Maximum Likelihood Hebbian Learning Based Retrieval Method for CBR Systems

CBR systems are normally used to assist experts in the resolution of problems. During the last few years researchers have been working in the development of techniques to automate the reasoning stages identified in this methodology. This paper presents a Maximum Likelihood Hebbian Learning-based method that automates the organisation of cases and the retrieval stage of casebased reasoning syste...

متن کامل

Localized Exploratory Projection Pursuit

Based on CART, we introduce a recursive partitioning method for high dimensional space which partitions the data using low dimensional features. The low dimensional features are extracted via an exploratory projection pursuit (EPP) method, localized to each node in the tree. In addition, we present an exploratory splitting rule that is potentially less biased to the training data. This leads to...

متن کامل

Projection Pursuit for Exploratory Supervised Classification

In high-dimensional data, one often seeks a few interesting low-dimensional projections that reveal important features of the data. Projection pursuit is a procedure for searching high-dimensional data for interesting low-dimensional projections via the optimization of a criterion function called the projection pursuit index. Very few projection pursuit indices incorporate class or group inform...

متن کامل

Learning Curves for Error Minimum and Maximum Likelihood Algorithms

For the problem of dividing the space originally pad tionec ~y a blurred boundary, every learning algorithm can make the probability of incorrect prediction of an individual example E decrease with the number of training examples t. We address here the question of how the asymptotic form of ~ ( t ) as well as its limit of convergence reflect the choice of learning algorithms. The error minimum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Data Mining and Knowledge Discovery

سال: 2004

ISSN: 1384-5810

DOI: 10.1023/b:dami.0000023673.23078.a3